





Absorption Hydrodynamics, Heat and Mass Transfer
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Scale-up, Versatile Applications

Diesel-engine waste heat recovery (2 kW,)
. Gas-fired heat pump water heater (3 kW)

. Residential Thermal Hub (3.5 kW, AC, heating, water heating)
. Residential gas-fired cooling (7 kWc)

. Forward operating base unit (2.6 kWc @ 52°C ambient)
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Extremme Ambient, Residential Scale, Waste Heat
Driven Absorption Heat Pump

Key specifications

Size 1.0x0.8x1.0 m Tsource 165°C
Cooling duty 10.65 kW Tambient 44°C
cop 0.63 Tehilled 12°C
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Surfactant Enhanced Absorption

Ammonia-water No surfactant 500 PPM of 1-octanol

absorption .

e High solution-side 2
thermal resistance

With surfactants

e Enhancementin
transport
coefficients by
Marangoni
convection

* |ncrease in
interfacial area
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Component level System level
* Overall thermal resistance e Reduction in absorber pressure,
reduction > 35% no change in desorber input
* Compact absorbers * Improvement in COP and Q_,,,



Decarbonization: What and where exactly is the challenge?

Energy sources Transmission End-use
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Waste Heat Recovery
and Storage in Buildings

Commercial Buildings
(No Heat Recovery and Storage)
& & f
Electricity !

r- Waste Heat

7347 x 10'5J

@

Fossil Fuels

No Heat Recovery
and Storage

With Heat Recovery
and Storage

Commercial Buildings
(With Heat Recovery and Storage)

I
Electricity [ _r , I

5910 x 10'5J
-19.6%

)

Fossil Fuels

l 1437 x 108

(a)

1945 GJ yr!

(b) 1500 GJ yr'!
Natural Gas

Water Heating

* Waste heat recovery and storage can reduce 19% of primary energy consumption

in buildings

 Compact, low-cost TES systems will play a key role reducing energy and emissions



Simultaneous Space Conditioning and Water Purification

* Open-loop absorption heat pump
* Modified to provide water purification
with minimal additional energy cost
— Partial evaporation of feedwater
— Pure water collected in condenser
— Feedwater used for cooling
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* Synthetic graywater used as feed
* Reduced conductivity from 106 uS/cm

 Demonstrates simultaneous water
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Moisture transfer in textile System-level models
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Cycle configuration

Low Temperature

Desorber Desorber
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* For long periods of storage time,
combined sorption-PCM cycle is
the most efficient

* Future work : Working fluid with
high enthalpy of dilution and low
enthalpy of evaporation



Cold Chain in Developing Countries:
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* 360 million tons of horticulture
produced annually
e Massive gaps in cold chain

—a "

infrastructure
75000
I Requirement
I Current
* 15 tons food storage
 Pack houses  Reefer vehicles Ripening chambers * Biomass driven, Green refrigerant (GWP = 0)

— Ammonia/salt composite working pair

* Post-harvest losses ~$13 billion
* Automatic operation, humidity & temperature control

annually
* Off-grid, compressor-free, affordable, reliable cold
storage: food security
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Operating Process

Hot water drives
GreenCHILL

(NH; + Salt
Composite)

Producer gas
heats water to
120° C
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(Versatile: Solar thermal, Waste heat, ... : T ki



Combined Absorption and Adsorption

(b) Store discharging with upgrade
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(a) Store charging
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« Liquid-gas absorption system for thermal energy storage of
Intermittent heat sources

« Solid-gas adsorption system for thermal energy upgrade
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« Solid-gas sorption has a wider range of working pairs and
temperature ranges

 Liquid-gas sorption requires less HEX surface area
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